AD-A124 268

EDITSPEC: SYSTEM NANUAL VOLUME IV DATA HANDLER(U)

11

UNCLASSIFIED

CONSTRUCTION ENGINEERING RESEARCH LAB (ARMY) CHAMPRIGN
IL E S NEELY NOV 8@ DOD/DF-83/802F FIG 972

NL

o avT
Py

VOl T XS KN

,
¢
,) ’
P .
b |
... ‘
-.
. .
.- -
| .
. ’
. .
| '
e _.
._ !
..
,

B 2 aali oy n
IR,
£
-~

N ’ ..
' o | ,..
..,) . EJ. 2 o. 8 :
vn-” a 2 2 ‘- .wn
b/ , |

- - ddaa

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

B Bk

23 .
3 :
; A3 3333014 :
. —— i
: %
" ! v.
.) : |
2 n v :
. S S .v-l
A «
g e 3 .
. 4
: 2
.4 1]
¥ |
B _.
F § A
EA
]
F ;
L
8
!b }
4
|
p,. .
4
$
)
A
~
5 ~
”s Z AN P A e a4 N - .
. \-l.'. RO - L9 AN . CRIASNAONN] . PN UPRS . T Y AN XL AT - @ ORI

* vl <V WM e B e o P AP . o~

e A Bn
F!knx:\ra:\a&i‘#k¢~a-“-‘-

<

&
- . o -
wtae wtL"artaota

DA124208

Computer-Based Specifications

EDITSPEC SYSTEM MANUAL

" VOLUME FOUR -- DATA HANDLER

by

Edgar S. Neely Jr.

Final Technical Report

November 1980

NEPRODUCED BY

NATIONAL TECHNICAL

INFORMATION SERVICE
1 A

............................

TV

PREFACZ TO ALL EDITSPEC SYSTEM REPORTS

The purpose of the EDITSPEC system reports is to provide com-
plete documentation to all personnel that must be involved with the
EDITSPEC system. Such personnel include managers, specification
writers, typists, computer systems analysts, and computer program-
. mers. Each personnel group requires different documentation. The

;e$orts required and the order of reading are shown in the table
elow.

e

"chéssinn ?Q{wa;;(/_w
Do o e 1 y._
: Nt R)ﬁ.ﬁ "

R T S .
APPSR DR podoﬂ
LN o 100

ggbﬁtiL

et . T T T -, [T SR A
R Pl RS at AT e e . - " - -
. e e R R . L e . . LTl e - 3

[T S R - " . R . -

ABSTRACT

This report provides computer programmers with documentation for a
machine-independent scientific and engineering data-handler. The
report discusses design concepts, subroutine functions, application
. commands, error messages, program conversion, test routines, and pro-
cedures for changing the data-handler. The data-handler has been
designed to minimize the resources required for its conversion and
operation.

.
h
K
n
»
L
"
1Y
L]
.
3
N
»

FOREWORD

This investigation was performed for the Directorate of Military
Construction, Office of the Chief of Engineers (OCE), under Project
. 4A762731AT41, "Design, Construction, and Operation and Maintenance
Technology for Military Facilities"; Task Tl, Development Work Unit
009, "Computer-Based Specifications." The applicable QCR is 1.10.001.
5. The OCE Technical Monitor was William Darnell.

VLT P BT > o ve— v - -oe .

The basic computer programs were written by Multi-Systems Inc.,
Cambridge, Mass., under contract DACA 23-75-C-0003, and modified by
Hans Wegener and Jayant Krishnaswamy of CERL.

The study was performed by the Management Systems Branch (Dr. O.
E. Rood, Jr., Chief), Facility Acquisition and Construction Division
(Mr. E. A. Lotz, Chief), U.S. Army Construction Engineering Research
Laboratory (CERL).

COL Louis J. Circeo is Commander and Director of CERL, and Dr.
L. R. Shaffer is is Technical Director.

/ »
LIST OF REVISIONS
HIS UMEN
Revision Date Reason for Pages
. Number Revised Revisions) Revised
iv

5 PREFACE
- ABSTRACT
| FOREWORD
. REVISIONS
£ 1 Design Concepts 1
I Introduction 1
Definitions 1
S Data Storage Modes 2
= Data Management Implementation 2
2 Applying the Data Handler 33
3 Application Command Subroutine Description 34
Definitions 34
Learning the Commands o 35
Command Descriptions
4 Subroutine Functions 62
5 Error Messages 63
6 Program Conversion o 65 .
7 Documentation Tapes Y
8 Test Routines . 69
9 Changes to Data-Handler Programs 70

APPENDIX A Data Handler Dump Example
APPENDIX B Subroutine Functions

............................... B T T AP W WL S WL A S S S

............................
.......................................

“$0272- 101

#-%EPORT DOCUMENTATION |1. REPORT NO. 2 3. Reciplent’s Accession No.

PAGE DOD/DF-83/002 £ AD. Arv 20&

4. Title and Subtitte 5. Report Date
EDITSPEq: System Manual, Volume IV: Data Handler November 1980

. . . RN - 'S
o ' ;

7. Author(s) 8. Performing Organizstion Rept. No.
Edgar S. Neely, Jr.

9. Performing Organization Name snd Address 10. Project/Task/Work Unit No.
Department of the Army | 4A762731AT41/T1/009 |
Construction Engineering Research Laboratory 11. Contract(C) or Grant(G) No.
P.0. Box 4005 . ' S
Champaign, IL 61820 . ©

12. Sponsoring Organization Name snd Address . 13. Type of Report & Period Covered

(same)
14

15. Supplementary Notes

For magnetic tapes, see

16. Abstract (Limit: 200 words)

: s

The EDITSPEC System is an automated system designed to produce construc-
tion specifications from Corps of Engineers Guide Specifications. The
System uses one central computer and a communications network to provide
remote terminal access by Corps offices, nationwide to a central data
base. : '

This report provides computer nrogrammers with documentation for a
machine-independent scientific and engineering data-handler. The
repvort discusses design concepts, subroutine functions, application
commands, error messages, program conversion, test routines, and pro-
cedures for changing the data-handler. The data-handler has been
designed to minimize the resources required for its conversion and
operation. ‘

’\ *
17. Document Anslysis 8. Dascriptors
Construction Specifications
Guide Specifications
Military Construction
5. identifiers/Open-Ended Terms
¢. COSATI Field/Grovp °
18, Aveltability Stateren; 18. Security Class (This Report) 21. Ne. of Pagn
UNCLASSIFILD
20. Becurity Class (This Page) 22. Price
UNCLASSIFIED
Boe ANSI-239.18) Soo instrustions en Reverse OPTIONAL FORM 272 (4-77)

''''''

(Formerly NTIS-33)
Depart o C

.......

..................................
............................

o EDITSPEC SYSTEMS MANUAL
i VOLUME IV: DATA HANDLER

1 DESIGN CONCEPTS

Introduction

This data-handler is a feasible method by which a programmer can
create data structures on disk without knowing record sizes, data
locations, etc. This direct access system provides in-core data han-
dling so that physical disk accesses are minimized.

The programs consist of several data storage and retrieval func-
tions and a variety of other utilities which create .and delete files,
inform the user of file status, and establish or remove access res-
trictions. The programs are written mostly in ANSI FORTRAN.

Definitions - ‘

DATA SET: a named, independently accessible collection of data on a
direct access storage device, created and maintained by the host
operating system; called a file by some hardware manufacturers.

PHYSICAL RECORD: a physical portion of a data set usually of fixed
length, which is accessible by means of one input/output operation
the computing system.

i ":‘,..

g e e me o
A e e ExD .
EARMLDINE IF ¥ NOSDNORRN

FILE: a named, logical subdivision of a data set.

LOGICAL RECORD: a logical portion of a file of variable length, which
is accessible through one application of the data-handler; usually
referred to simply as "record.”

In essence, the data-handler maintainz a logical structure of
named files composed of variable-length, randomly accessible records
by manipuiating physical records in one or more data sets.

APPLICATION PROGRAM: The set of subroutine that are using the
DH for data base management. .

a l' l'..‘ a":’l

s e 2
v RPN
. o

v il

o
'o-. *

AR il SRl AR Fres Y T
D R EIRATI

v
»
e

.
"=

" -v‘-!r\ - v
. it iy re e e s
PO N N TN AN IR

.......................

Oata Storage Modes

Two storage modes control how data is stored in the physical
records on disk: CHAIN and PACK.

In CHAIN mode, the data-handll store with each logical record
the record identifiers of the preceding and following logical records
in the file. The logical records must therefore remain in the order
in which they are written. Chain pointers are available to the pro-
grammer who is reading or updating logical records. The pointers are
always updated whenever a logical record is added or lengthened.

In PACK mode, the data-handler.routines will fill physical
records to capacity and, when necessary, segment logical records
which span two or more physical records.

CHAIN and PACK modes may be specified independently so that four
combinations of options are available:

0 - neither CHAIN nor PACK
1 - CHAIN only

2 - PACK only

3 - CHAIN and PACK

The DH recognizes only the first definition of this option. Any
redefinitions are ignored by the OH.

Data Management Implementation

The "data handler”" (DH) is a general-purpose, direct-access data
management system. The DH appears to an application program as a set
of subroutines. The DH is written largely in ANS FORTRAN. The DH is
designed as an interface between an application program and FORTRAN
direct-access input/output (1/0) facilities (Figure 1). This pro-
vides a two-fold advantage. Direct-access I/0 can be performed (1)
at a logical level and (2) in a machine-independent manner.

The DH deals with only direct-access data sets (Figure 2). The
contents of a dataset must be understood from three different view
points:

(1) host system

(2) data handler

(3) “application program

a. Host System. Data sets consist of physical records.

b. Data Handler. Data sets consist of files. Files consist of
physical records. Physical records may also be referred to as

.........

P U

application X
program

H control ond dota H_ H

4 data
¥ handler

0 : - Hoo:.«o_ ond dota B
3 o ™

7 o . FORTRAN
y 3)

direcl-access

o
g
. inpul/output B
X facilities ¥
--;
- Figure |. Data Handler As Interface
ﬁ,”a”. .
. .
[
%
a
i
.
B)

direct access

data
sels

!

files

p—)
,..»

by !

. direct access divect access
data dalo
sels sels
:

o

w.w.. *

m..,. [

o I

..... ‘ h

1 files
X [

3 - |

&8 I [

A . physical blocks
.

records (physical
P . records)

HOST
OPERATING
SYSTEM

PR RS AN

——

logical
records

{

1

logicol
record
segments

Figure 2. Direct

N S

DATA
HANDLER

Access Data Set Structure

APPLICATION -

PROGRAM

.......

% blocks. Blocks (physical. records) are composed of logical record
= segments.

' c. Application Program. Data sets ronsist of files. Files
i consist of logical records.

Several cross-relationships should be noted:

f;) (1) The logical record of the application program may actually

l be stored within one or more data handler logical record segments.
;} (2) A data handler block may be written as one or more operat-
vy ing system physical records.

Program Variable Naming Conventions

The na&es used for variables within the data handler follow the
following logical order:

(1) A1l variable names are five letters in length.
(2) The first letter options are:

"a. K for contents of

b. I for index to

¢c. N for number of

(3) The second and third letters options are:

3. PR for physical record

b. LR for logical record

c. 0OS for data set
d. OF for open file
e. BT for block table

(4) The fourth letter options are:

B2 NI CRELKC § m—-' vy ey

a. H for header

8 4

(5) The fifth letter options are:

a. S for status

b. P for previous

s, T
PRI

¢. F for following .

d. N for number

Data Set Structures

The first two blocks of a direct-access data set maintained by
the DH contain three independent, special-purpose LR segments (Figure
3). These blocks do not belong to any file, and the segments are
known as the data set header (DSHED), the file directory (FD), and
the free space table (FST). The DSHED and FD are contained in the
first block, while the FST i; contained in the second.

'S

The DSHED contains various information about the data set and
host computer system (Figure 4). See the discussion of data set
table entry below for'the meanings of KDSSU, KDSPR, KDSBI, KDSFS, and
KDSFD. See Table) for the meanings of NBSGN, NBBLK, DHFLG,
@PSYS(2), and DHVER. The time is given in the form hh:mm:ss, and the
date is given left-justified and blank-padded in the form dd-mmm-yy;
they are the time and date when the data set was initialized by the
DH. The rest of the elements in the DSHED are the same as °
identically-named elements in blank COMM@N.

The FD contains an entry for each file that is contained in the
data set. An FD entry is identical to an open file table entry. FD
entries are numbered consecutively beginning with one.

The FST is a bit map; each bit indicates whether (on) or not
(off) the block corresponding to that bit has been allocated to a .
file in the data set. Both the FD and FST are extended when neces- - A--+g,.
sary to additional LR segments. 7 Sop A —

The remaining blocks are used to store data. The data is organ-
jzed into dynamic collections of blocks known as files. One block
can belong to only one file.

Bloek Strustures

Blocks within a dataset are sequentially numbered starting with
one. A block can belong to only one file. The block number is the
sequential number assigned to a block. A block is composed of three
sections.

The first three SU's in each block are known as the physical
record (PR) header (figures). The first SU contains the contents of
the physical record header status (KPRHS). The high-order (left-
hand) half 6f KPRHS is the number of logical record segments in the .
block, while the low-order half is the number of unused SU's at the ¢
end of the block. The second SU KPRHP is the block number of the
block that was previously written for the file to which this block
belongs; it is zero if this block is the first one in the file. The

e freiis¥elstid,
spieiitetedintiit] Tulnn

......

. .\L

.=o>m4 19S ojog ‘¢ anbi4

| 8190}
e aJndg .
°a14 & 2 woig :
A 10§9911Q .
e R

e Japoap :

\ 1°S
) § | ¥ooig

4
...L
E
19p03H 19S5 D@ v nbBi4]
- A 4]
Q4SO nvN .
0492 N8N :
S4SAM . NON . _
18SaM . o8N _.
MYN |
pazion o | MON
AK-ww-pp | (s,nS€) 310 : o S MEN E
pozipI Iy} Y3AHA - © -
sspwwiyy | (snS 2) swnl o _)
ML, | (215450 r
MI »18aN |
NSJIMN NOSEN _
ISUAY 914HO
NZON NASO)
2naN NSSOM

%o

o e e) em
. N

-
et

{noko] ¥o0i8 ‘G 34nbi4

3|1} sIyl Joj "ON 3I0|q UM Ajjuanbasqgns

aj1j SIY| 10} ‘ON NI0|q UM >_m:o_>ma__

%20|q jO pusd jo S NS pasnun jo "ON
%90iq ut sjuawbas pioaas 02160} jo ON
|

s,NS
pasnupn

sjydwbag

pi023Yy

1001607}

dHYIA

13po3y
dHYIA P1008Yy

10918Aug
SHYJN

.................................

N LRt . e —a o -

third SU KPRHF is the block number of the block that was subsequently
written or is next to be added to this file. Hence, the blocks that
constitute a file are chained together in both directions.

. YLttt

The application programs logical record may be divided by the DH —
into segments for storage. These segments are known as logical 'nmqu
record segments. The block will contain one or more logical record u
R (LR) segments. There are three reasons why an LR may be represented
K by more than one segment: (1) the LR is too long to fit in one
l block; (2) the LR is too long to fit into the unused portion of any

block belonging to the file for which this LR is written, and the
pack option is in effect for this file; (3) the LR cannot be contigu-
ously extended due to lack of space in the block.

i The remaining portion of the block contains unused SU's.

Logical Record Segment Structure

Associated with each LR segment is an SU quantity known as the
LR segment identifier (ID). The high-order quarter of this quantity
is the segment number, which is the position of the segment within
the block, relative to the beginning of the block; segments are num-
bered beginning with zero. The low-order three-quarters of the LR pem—
segment ID constitute the block number. If the LR segment is the i
first or only segment of the LR, then the LR segment ID is often
called simply the LR ID.

The first several SU's in each LR segment are known as the LR
segment header (Figure 6). The extreme high-order portion of KLRHS
contains three status bits known as the continue, segment, and delete
bits, whose positions are given by the COMMPN variables NBCPN, NBSEG,
and NBDEL respectively (Table 1). Bits within an SU are numbered

~ from r1ght to left beginning with zero. The continue bit indicates
whether (on) or not (off) this LR segment is continued to a subse-
quent segment. The segment bit indicates whether (on) or not (off)
this segment is continued from a previous segment. The delete bit
indicates whether or not this LR has been deleted, The four low-
order bits in the high-order half constitute the number of free char-
acters in the last SU. The low-order half of KLRHS is the number of
SU's in the LR {segment) including the header. The segments that
represent an LR are chained together in both directions, but the LR's
that constitute a file are chained only if the chain option is in
effect for the file (Figure 7).

E KLRHP contains the following:
No Chain Option

(1) If this LRS is the first one in the file, zero.

inoko juawbag piodey 1091607 ‘g ainbi4

Q) vapyum Ajjuanbasqgns

Ql ualum £Aisnoiaasd

$J3}20J0Y49 0}0p jO .._o_:ma.a 10 JO ON -

uewbas ul s NS 4O ON

NS 1SO] U1 "$11D 334
] .e o
(wo4j ponuyuol .. juawiba
(0} panuljuod) lid anujuod

sJ19
pasnun

viva

JHY™

dHY ™

NHYDI

SHY™

Rquny ¥0ig

Jaquiny juawbag

al-y1
Jayijuepi
juowbas

p10293)

(e L]

11

P Wi T WV Ve Y

X

BRI N S

-

)

uioy)d juswbag piooay 1021607 2 9nbi4

QY034 WVII9071 ONIMOTI104

£-S41 h

z-su1 ¢ ?

v

1-Sy1

A M Jen el S e

(8,547 @311 o) papinip) gyOIFY VII90T LN3YYND

. N

GYOI3Y TVYII90T1 SNOIAIYY

g -

TABLE 1
FIXED AREA
Variable/ Position :
: Array in COMMCN Description - Value
l 1. SYSTEM WIDE
1
. 2
! 3
L
,': 4
*** Machine Characteristics **¥
NBW 5 Numter of bits.per word
NCW 6 Number characters in a word
NAW 7 Number of addresses in a word
NBC 8 Number of bits per character
NCU 9 Number of characters in a
“standard unit" (approximately
32 bits long)
n NBU 10 Number of bits per standard
4 unit
NAU 11 Number of addresses in a
standard unit
NBU2 12 One-half of NBU
NC2U 13 Number of characters in a double
precision variable (about 8-10 chars)
RVRSE 14 Flag telling order of characters:
0 = left to right
1 = right to left
NWPSU 15 Number of real words per standard
unit:
0 = two SU's per real (e.g. IBM 1130)
1 = one SU per real (e.g. IBM 360)
2 = two real's per SU
13

Variable/

TABLE 1 (CCNT'D)

;. Array 'ipno ?Otrf}\%r;{ Description Value
-
g
ii LFIW 16 Number of bits in a FORTRAN integer
L LFIWU 17 Number of useable bits in a FORTRAN
» integer
18
E- 19
E:':FI 20
21
22
‘ 23
*** Standard Devices *** _
ICRD 24 Card reader logical unit number
IPRT 25 Line pr?nter logical unit number
IPCH 26 Card punch logical unit number
ITAP 27 Magnetic tape logical unit number
ITRMI 28 Terminal input logical unit number
ITRMC 29 Terminal output logical unit numbter
JTRMI 30 Second terminal input logical .
unit number
JTRMO 31 Second terminal output logical
. unit number
IPLT 32 Plotter logical unit number
IGRAI 33 Interactive graphics input logical
unit
IGRAC 34 Interactive graphics output logical

unit

TR . S

- TABLE 1 (CONT'D)
EE Variatle/ Position
l Array in COMMON Description Value
>
ﬁ 35
! 1
' 37
. *** Constants and Masks ***
TRU 38 Value of logcial true (largest
positive integer) -
FALS 29 AVa]ue of logical false (largest
negative integer)
ZERCS 40 A word of all "zeros"
ONES 41 A word of all “ones".
FORML 42 Token format magk.(l,z,l)
FORM2 _ 43. COL dictionary format mask (2,2)
FORM2 44 C0B pointer format mask (3,1)
45
46
i 47
f 48
e 49
E *** Executive Data Area ***
5 SCA 50 Subscript of start of communications
3 area (=176)
; ATLID 51 LRID of active task list
L SCRRL 52 Name of executive work file
SCRFL 53 Name of executive work file
15

............
............

TABLE 1 (CONT'D)

K Variable/ Position
l Array in COMMON Cescription Value
54
*** |exical Analyzer Data Area ***
NXCHR 55 Next character in input buffer
IDFT 56 Data field type
ISTD 57 Start of data field
LSTR 58 Length of string or an integer value
DCOM 59 Command (up to 8 characters) or a°
DCCM 60 double precision value
MLCA 61 Maximum Tength of user communications
: area (for referencing in a CDB)
SYDID 62 LRID of system command dictionary
DICID 63 " LRID of current command dictionary
COBNM 64 Name of current CDB
CDBNM 65 Name of current CDB
CDBID 66 LRID of current CDB
SYMID 67 LRID of current symbol tatle
SVTID 68 LRID of current standard value table
NXELM 69 Pointer to next CDE element
- . RELOC 70 Subsystem common relocation factor
i (must be a positive number)
:} CSTID 7 LRID of modifier condition stack
. WATID 72 LRID of ID wait 1ist
73
74

16

...............

e . . -, . LT,
LA P T L Ay S S Y P

Variable/ Position

TABLE 1 (CONT'D)

i Array in COMMCN Description Value
i 75
X 2. DATA HANDLER INTERNAL VARIABLE AND ARRAYS.
- 1POCL 76 Position in COMMON of 201
i beginning of pool area
: IPLEN 77 Length of pool area 9800
. NBLMX 78 Maximum length of a block 256
NBSGN 79 Number of bits in a segment g
number
NBBLK 80 ‘Number of bits in a block 24
number o
ILLRH 81 Length of an LR (segment) 4 -
header
ILRHS 82 Position in LR (segment) 1
header of KLRHS
ILRHN 83 Position in LR (segment) 2
header of KLRHN
ILRK/ 84 Position in LR (segment) 3
header of KLRHP .
ILRHF gs Position in LR (segment 4
header of KLRHF
[LPRK 86 Length of a PR header. 3
. IPPNS 87 Position in PR header of 1
KPRHS
. IPRHP 88 Position in PR header of 2
KPRHP
IPRHF 89 Position in PR header of 3
KPRHF
IBTST 90 .O'th displacement of BT (computed)

-t

17

.............

..

N TABLE 1 (CONT'D)
h Variable/ Position
Array in CCMMON Description Value
NEBT 91 Number of BT entries ' (computed)
IELBT 92 Length of a BT entry 273
ILBTH 93 Length of a BT heaqer 17
IBTNS 94 Position in BT header of 1
KBTNS
IBTBL 95 Position in BT header of 2
KBTBL .y
IBTQ 96 . Position in BT header of ' 3
KBTQ
IBTPP 97 Position in BT header of 4
KBTPP Lo
IBTL 98 Position in BT header of 5
KBTL
IBTTR 99 Position in BT header of 6
KBTTR
IBTCN 1C0 Position in BT header cf 7
KBTCN
IBTDP 101 Position in BT header of 8
KBTDP
IBTNC 102 Position in BT header of 9
3 KBTNC
> IBTS 103 Position in BT header of 10
- KBTSW
? IBTFN 104 Position in BT header of 11
c IBTFI 105 Position in BT header of 15
- KBTFI
IBTPI 106 Position in BT header of 16
KBTPI

..............

T RO T T e e 1
1
< TABLE 1 /CONT'D)
" Variable/ Position :
.’ Array in COMMON Description Value
o IBTLN 107 Position in BT header of 17
. ‘ KBTLN
3 IBTLG 108 0'th displacement of ET (variable*)
entry referenced as result
of most recent call of DKGET
IBTPQ 109 0'th displacement of BT (computed)
priority queue ‘
IBTCP 110 Position in BT of entry (variable**)
with highest priority
IBTBT 111 Position in BT of entry (variablex**)
with Towest priority)
10FST 112 0'th displacement of OFT (computed)
NEOFT - 113 Number of OFT entries 125 -
IELOF 114 Length of an OFT entry 9
ICFFN 115 Position in OFT entry of 5
KOFFN
IQFFL 116 Position in OFT entry of 6
KOFFL
IOFLL 117 Position of OFT entry of 7
KOFNB
IOFNE 118 . Pcsition in GFT entry of 8
KOFNB
ICFLB 119 Position in CFT entry of 8
. KOFLB
ICFFD 120 Position in OFT entry of 9
KOFFD
IDSST 121 0'th displacement of DST 20C
[ELDS 122 Length of a DST entry 12

19

........................

TABLE 1 (CCNT'D)

Variatble/ Positicn .
Array in COMMCN Description Value

IDSLY 123 Position in DST entry of 1
KDSLU '

IDSFN 124 Position in DST entry of 2
KDSFN

IDSPR 128 Position in DST entry of 4
KDSPR

[DSPE 126 Position in DET entry of g
KDSPB

IosPL 127 Position in DST entry of 6
DKSPL

IDSFD 128 Position in DST entry of g
KDSFD .

IDSFS 129 Position in DST entry of e
KDSFS

[DSSU 130 Position in DST entry of 7
KDSSU

ILDSN 121 Length of a data set name 2

0PSYS(2) 132 Name of host operating "IBM QS'
system

CHVER 134 DH version 'VIF !

DHFLG 135 OH flag ‘D !

NBCON 136 Position in KLRHS of 29
continue bit

MBSEG 137 Position in KLRHS of 30
segment bit

NBDEL 138 Position in KLRHS of 3l
delete bit

NBWIN 138 Position in KBTSW of 0

written-into bit

20

U 2Py

o —— : ARSI i oS e {
- TABLE 1 (CONT'D)
Variable/ " Position
Array in CCMMCN Description Value
, NBRIT 140 Position in KBTSW of 1

write-in-progress bit

NBRED 141 Position in XBTSW of 2
read-in-progress bit

NBOPN 142 Position in KDSLU of 16
open bit

NBCLD 143 Position in KDSLU of 17
¢ld bit

NBSAV 144 Position in KDSLU of . 18
save bit

NBSHR 145 Position in KDLSU of ‘ 19
share bit o

NBCHN 146 Position in KOFFD of ' c -
chain bit

NBPAK 147 Pesition in KOFFD of 1
pack bit :

NBPRC 148 Position in KOFFD of 4
protect bit

NBNDS 149 Bit position in KCFFC of 8
beginning of data set number

KO ' 10 lero c

K1 151 One 1l

K2 152 Two 2

10S81 153 Position in DST entry of 10
KDSBI

IDSKN 154 Position in DST entry of 11
KDSWN

s 155 Position in DST entry of 12
KDSWD

21

.

ISk P R

Y,

vv"

s A
4

K N OAOMAMER

TABLE 1 (CONT'D)

A N

Variable/ Position
Array in CCMMCN Description Value
HEDLR(4) 156 Work area for an LR (variable)
: (segment) header
DST(12) 156 Work area for a DST entry (variable)
DATA(17) 160 Work area for a BT hezcer (variable)
3. DATA HANDLER COMMUNICATICNS.
STASK 176 Sending task name (RSX-11D
scratch area)
LCA 177 Length of user communicaticns'areé
transmitted by last/next message set
TRACE 178 Executive trace switch: each bit,

.......................

,,,,,,,

when on, indicates a type of tracing
to be printed on unit IPRT.
Bit (Value}) _ Item Printed

1

0 Digitize expansions
1 2 Tokens created
2 4 Macro expansions
3 8 Macro argument
Substitions
4 16 Names of programs/tasks
executed

5 32 Mames of CDB's called

6 €4 Statements of CDB's
interpreted

7 128 Ccmmon values modified

8 256 Mzcro precessor return
information

S 512 Command dictionary search
information

10 1024

11 2048
12 4096
13 8192
14 16384
15 32768

22

TABLE 1 (CCNT'D)

> Variable/ Position :
] Array in COMMCN Description Value
EXST1 179 ~ Executive status switch 1: Each
bit, when on. signifies the presence
of scme exceptional condition.
Bit (Value) Meaning
0 1 Return to executive
1 2 ID labels required
2 4 ID wait 1ist grocessing
3 8 Inhibit user program
execution (system control)
4 16 Inhibit user procgram
execution (user contrecl)
e 5 32 Next record continuation
of preceeding commanrd
6 64 Repeat tabular processing
7 128 End of file on input
e 256 Input error occurred (CI)
9 512 ,
10 1024 User procgram signaled
error
11 2048
x 12 4096 Interactive mode
. 13 8192 :
- 14 16384
- 1§ 32768
!! 180
B PSTID 181 LRID of program/CDB stack
© TORID 182 LRID of token list
Y
a TVLID 183 LRID cf token value table
NXTKN 184 Next token to Lte processec
185
INCMD 186 Logical unit number from which
to read commands
*** Data Handler Arguments ***
MAXGP 187 Maximum numbter cf characters per

GET/PUT

23

o .. N PR

I P P S ST Sy |

TABLE 1 (CCNT'D)

: Variable/ Position
I Array . in CCMMCN Pescription Value
NDS 188 Data set number
! FILNM 169 File name (up to 8 characters)
E FILNM 190 File name (up to 8 characters)
i LULID 191 %ﬁlgi$: next (or first) recorc
: PREID 192 LPID of preceeding (or last) record
LRLEN 193 Logical record length in characters
. FSTAT 194 File status (frem DKFIL)
5 NDA 185 Meximum number of direct- access data
; set o
& IDHTR 196 Data handler trace switch
P IDHER 197 User error handling switch
. IDKER 198 Data handler error number
ﬁ SSYSN 159 Subsystem name (up to & characters)
) SSYSN 200 Subsystem name (up to 8 characters)

* ipnitialized to value of IBTST
** initialized to 1
w** jnitizlized to velue of NEBT

24

.............

4

SRS 1 St

...................................
,,,,,,,,,

(2) If this LRS is not the first LRS, LRS ID of the LRS written
previously for this LR.

Chain QOption

(1) If this LRS is the first one in the file, zero.

(2) If this is the first LRS of a LR, LR ID for the first LRS
of the previously written.

KLRHF contains the following:

No Chain Option

(1) If LRS not the last LRS in LR, LRS ID of the subsequent
LRS.

(2) If LRS is the last LRS in LR, or the point option is not in
effect, zero.

Chain Option

(1) If LRS is the last LRS in CR, LR ID for the first LRS of
the subsequent record.

The actual data is stored next followed by the unused characters
in the last SU.

Program Common Structure

The great majority of internal variables and arrays used by the
DH are located in blank C@MMPN (Figure 8). Common consists of a
fixed arep and a pool (dynamic) area. The first sections in the
fixed area contain system-wide and DH communications variables and
arrays. The second section contains the DH internal varfables and
arrays. All three sections are documented in Table 1. A1l positions
and lengths in Table 1 are given in terms of SU's. All elements in
this section that need to be initialized are done so during DH ini-
tialization.

The pool area contains the four DH tables: the data set table
(DST), the open file table (@FT), the buffer table (BT), and the BT
priority queue. There {is an unused area at the end of common.

The DST contains an entry for each data set that is currently in
use by the DH (Figure 9). The high-order half of KDSLU contains four
status bits known as the open, old, save, and share bits, whose posi-
‘tions are’'given by the COMMPN variables NB@PN, NB@LD, NBSA, and
NBSHR, respectively (Table 1). The open bit indicates whether or not
the data set is open to the host operating system. The old bit indi-
cates whether or not the data set existed before the current

—

25

stem-
w?ze vari- \
ablesand
arrays (75
5 suU's)
l) dota

handler
internal . .
variables > fixed area (200 SU's)
and crrqys
(f11) SU's)
dota

handler
communica-

tions voriables
and arrays
{14 SU's)

data
set

- toble
- (variable
length)

open <
file
toble

(currently

1125 SU's)

) | butfer
g table
: (variable pool {)area

length) {currently 9800 SU’s)

buffer

table
priority
queue

(variabje
length

N\

unused
(variable

length) /

Figure 8. Common Layout

5
2
3
3
b.;

AR Ptk

. .

noko 31qo) 19S pipg ‘6 9.nbi 4

1S4 v NMSQY Jo uolitsod

I19s ojop ul PaZIDII SHI0)q JO "ON
§9S DJDP Ul PASN SYJ0|q JO ON
K1ua g4 994y 1xau oN Anua”

S,NS W 3z1s Yd0(q

%301 Ut Yd 101130d 15D} S NS 'ON
%#201q 13d S)dq 3|0yMm "OpN

$ NS Ul 8IS PJ0J3I |DIISYY

9wI0u |3s oljoQg

"ON hun (02160
1q snjoys 3ioyg

1q SNIDIS dADG

AMSQX

NMSOX

18SON

S4Sa

a4say

NSSOM

4SO

adsad

SO

(C)NJISON

MSaN

19 snjois pio

1nq snjois uadp

38N W 135
0j0Q PUOIRg

asn ut |3s
I0Q iSN3

27

Dl B

PP SR i S

L et et At A oA At el - -

execution of the DH. The save bit indicates whether or not the data
set is to be saved at the end of the current execution. The share -
bit indicates whether the data set can be shared with another,
concurrently-executing DH task. The low-order half of KDSLU is the
logical unit number.

KDSFN is the data set name, KDSPR is the PR size (in SU's),
KDSPB is the number of whole PR's per block, KDSPL is the number of
SU's in the last (partial) PR of a block if the block does not end on
a PR boundary (it is zero otherwise), KDSSU is the block size (in
SU's), KDSFD is the entry number of the next free FD entry, KDSFS is
the number of blocks initialized in the data set, and KDSWN is the
postion of KDSWN within the FST. .

The QFT contains an entry for each file that is currently in use
for output by the DH (Figure 10). K@FFN(4) is the file name. K@FFL
and K@FLL are the LR ID's of the first and last LR's, respectively,
that were written for the file. K@FNB is the block number of the
next block to be added to the file. K@FLB is the block number of the
last block that was written for the file. The high-order half of
K@FFD is the entry number of the FD entry associated with this file.
The bits in the low-order half of K@FFD constitute the data set ,
number (DST entry number) of the data set to which the file belongs.
The extreme low-order portion of the low-order half of K@FFD contains
three status bits known as the chain, pack, and protect bits, whose
positions are given by the COMM@N variables NBCHN, NBPAK, and NBPR@.
The chain and pack bits indicate whether or not the chain and pack
options are in effect for the file. The protect bit indicates
whether or not write protection is in effect for the file.

The BT contains an entry for each block of a data set that is
currently in main storage (Figure 11). KBTNS is the data set number
(DST entry number) of the data set to which this block belongs.

KBTBL is the block number of the block. KBTQ is the segment number
of the segment which was requested when the block was read into main
storage, and KBTPP is the position in COMMON of the SU immediately
proceeding the beginning of the segment. KBTL and KBTTR are the seg-
ment and block numbers, respectively, of the LR that was most
recently referenced in this BT entry. KBTCN is the position within
this LR of the first (data) character (of a set) that was requested.
K8TDP is the position in CPMM@N of the SU that contains this charac-
ter. KBTNC is the number of characters in the first segment of this
LR. KBTSW contains three status bits known as the written-into,
write-in-progress, and read-in-progress bits, whose positions are
given by the COMMEN variables NBWIN, NBWIN, NBRIT, and NBRED, respec-
tively. The written-into bit indicates whether or not the block has
been modified in this BT entry. The write-in progress bit indicates
whether or not an output operation is in progress for the block. The
read-in-progreas bit indicates whether or not an input operation is
in progress for the block. KBTFN(4) is the name of the file to which
the block belongs. KBTFI and KBTPI have the same values as KLRHF and

28

PRI
o .

inoko] Aiu3 Aiopdaag 3an4/9iqol a4 uadp ‘Ol anbi4

yo310id

y%ood

uinyd

1quwnu J3s bjop
03 v oN Anud

pappo ¥20iq |SO| "ON %90|q
PPD 0} %30|q X3 "ON %20iq
47 1507 -8y

Y Isd4 1-SyN

awoN 34

111

Q440

g140M

8NJ0

T40)

13404

(VINIION

om| a4

uQ 34

29

- N NN IS

L e

A0
'.~~
e
R
LI N
k-
A
v
-3

oy]i et AN
A B S A]
o ca il Tl T e,

Buffer No. |

KBTNS

KBTBL
Buffer No.2 KBTQ

KBTPP -

KBTL

KBTTR

KBTCN

KBTDP

KBTNC

KBTSW [

KBTFN(4)

KBTFI

KBTPI

datc

1N data set No.-OST

block No.

segment No. requested
su position proceeding segment

most recently referenced segment No.

block No.
first data character position

su containing first dato ctr.
SNo. of ctrs.in first segment

written into bit
write in progress bit
read in progress bit

file nome

KLRHF for KBTL

KLRHP for KBTTR

KBTLN / No. ¢trs. in LR

P{guffer {currently 256 SU's)

/

Figure | |I.
IS¢

Buffer Table Layout

inoko and Aysoid 1§ 21 2nbi g . .

. ®-
o . Kiua _ A3gud A
- . syl a1050g s souy b

3 : paoudlzaYy WERITEYETEFY]

31

... . " " N .

)
” | Aua 19 i _
) ;
s \l/\ll\n{.’\\‘/

- o . O N
.\:. --Nuh;g l-.-. ._.-,-41. !

KLRHP, respectively, in the LR header of the LR given by KBTL and
KBTTR. KBTLN is the number of characters in the LR.

' The BT priority queue contains an SU entry for each BT entry
(Figure 12). The high-order half of the i‘'th BT priority queue entry R
is the entry number of the BT entry that was referenced immediately ST
after the i'th BT entry. The low-order half of the i'th BT priority
queue entry .is the entry number of the BT entry that was referenced

- immediately before the i'th BT entry. Hence, the BT priority queue

l imposes a most-recently-referenced-to-least-recently-referenced ord-
ering on the BT entries. A more recently referenced BT entry is said
to have a higher priority than a less recently referenced BT entry.

A block in a higher-priority BT entry will be retained in main
storage longer than a block in a lower-priority one.

The DH includes a routine which produces a dump of blank C@MMON.
A1l items are identified in the same manner as they are in this docu-
mentaion. The values are given in decimal digits and characters as
applicable except for KDSLU, K@FFD, KBTSW, the buffer contents of the
BT entries, and the BT priority queue entries, which are given in
hexadecimal digits. An annotated dump is given in Appendix.A.

- Definitions

Data Set Block - Fixed-sized unit of information stored on a data
set. The actual information read (or. written) from the disk and

2 to the local program 1/@ buffer area. -
F! Program I/@ Buffer - Fixed-sized unit of storage in the local program
- space to be used to store data read from (to be written to) disk

storage.

Physical Becord - Fixed-sized unit of information measurement which
must be equal to or less than the size of the data set block.

32

PRSPPI AP USSP W Wt Aadad

2 APPLYING THE DATA-HANDLER

73 DRIt

The use of the data handler (DH) within a computer system appii-
cation program requires the review and application of two data
handler routines. The first routine, DKNIT, initijalizes the data
handler, allows the system programmer to define the system parameters

to the data handler, and builds the necessary tables for DH execu-
tion.

R VLA

The system programmer must review the definition of each parame-
ter and variable in this routine and define the values with respect
to the actual operating system characteristics.

TR T
e

This routine must be the first routine called by the application
system.

When all processing has been completed the application system
should call DKXIT to logically close all DH managed data sets.

During the period after the call to DKNIT and before DKXIT all
application programs can utilize the DH application routines to read
and/or work information from/to the DH datasets. oranrs
Miseli
y ’?"#.‘!;:
L [t

- !lé’ s
ik
4T E)

[

e el : e o ah el imr ms . R VU A R SRR 7% -
T e T e ke e -

3 APPLICATION COMMAND SUBROUTINE DESCRIPTION

Definitions

Several parameters are kept in COMMON, rather than being passed
as arguments. These include:

FILENAME - the name of the file being operated on; it contains
up to 16 characters.

NDS -~ the data set number, usually 1,2,3, or 4.

PREID - the logical record identifier of the preceding record in
the file.

FOLID - the logical record identifier of the following record in
the file.

LRLEN - the logical record length, in characters.

FSTAT - the file status (see DKFIL 4.8).

Learning the Commands

- The logical order for learning the commands and functions is to
‘ read the descriptions in the following order:

1. Access to Data.

1. LOK/UNLOK - to obtain controlled access to information.

l - 2. Data Sets.

o
!l
e
£
F .
l‘.‘*i

1. DKNNDS - To find a data set number.
2. DKDSN -~ To find data set name
3. DKSET - To obtain general information.

3. Files.

1. DKOPN - To create and/or open a file for writing.
2. DKPUT - To write information.

3. DKINS - To write (insert) information

4. DKGET - To read information

5. DKDEL - To delete information.

6. DKRNM - To rename the file

7. DKFIL - To obtain general information

DKLEN™- To obtain the length of a record.

9. DKLOS - To disallow writing

M AN et ik ot N <Y ¥ L)

R 3 A R A

PR N o e
.

e 0
L

-y
o *

»
v
!
'
b
!
%,
{
'

B OO P AR

CALL DKDEL (RECID)

RECORD DELETION
DKDEL

PURPOSE

To delete a specific record within a file or to delete a complete file.

GENERAL FORM

~d

b.

subroutine is called.

...........

where RECID is a zero or thé
record id for an
existing record.
(INPUT)
FIELD OPTIONS
FIELD OPTIONS DEFAULT
1. RECID a. valid record id No Default

zero (0) to delete
all records in
the file FILENAME

SPECIAL NOTES

The programmer must set variables NDS and FILENAME in common before the

36

ol e st Pt

OME RN DS .;...,‘_'-“';.:',." ‘..,4..»:_:::.:‘;.'.: .v.-*;- L ommeem
K
EXECUTION PROCEDURE
g) The system will delete the record specified from the data set NDS. If
- the RECID is zero, the entire file defined in FILENAME will be deleted

from data set NDS.

LN T B

-1 &

37

. . . - T N - » . L‘L b
e L mtoamt . PPN RPN Y, 2. y T ——

...............................

i

Tkl
:
.l
,
‘o
,

FIND DATA SET NAME

DKDSN
¥ PURPOSE
Eé To find the dataset namé when the dataset number is known.
GENERAL FORM
CALL DKDSN(DSNM)
where is returned as the dataset

name: (output)

FIELD OPTIONS - None

SPECIFIC NOTES

The programmer must set variables NDS and FILENAME in common before the
subroutine is called.

EXECUTION PROCEDURES

The system will locate the data set specified by NDS and return the
dataset name. If the data set is not found, the routine will return the
next data set with a larger NDS valve. NDS will be changed to point to
;he new gata set. If no more data sets are available, NDS and DSNM will
e zeroed.

P S

e e, § LY

38

. OBTAIN FILE INFORMATION
R DKFIL

PURPOSE

To obtain the general information about a specified file.

'-'.f'..',.‘. A
. e

GENERAL FORM

CALL DKFIL

3
N
e,
> .
i
o

v._

FIELD OPTIONS - None

SPECIAL NOTES

The programmer must define NDS and FILENAME in common before this sub-
routine is called.

EXECUTION PROCEDURES

FSTAT is returned in common as
1 - if the file does not exist
2 - if the file is closed

3 - if the file is open

PREID is returned in common as the record id of the first record in the
file.

.t > AJ
Y&

FOCID is returned in common as the record id of the last record in the
file.

i 05 e Y

. :
AW I ¢ e

39

wy
AN I

AN S L R DT AP JUNEDR P UL N W W RESUIPS LIPS ' A

SO N e e W W W

GET INFORMATION FROM DISK
DKGET

PURPOSE

To obtain information from a file on disk storage.

GENERAL FORM

CALL DKGET (RECID, AREA, L1, L2, NC)

where RECID
AREA

Ll

L2

NC

is the logical record
identifier. (INPUT)
is the location

into which the

information is to

be placed. (OUTPUT)

is the first charac-

ter to be read

from the record. (INPUT)
is the last charac--

ter to be read

from the recaord. (INPUT)
is the actual

number of charac-

ters read from

the record. (OUTPUT)

FIELD OPTIONS

FIELD

DEFAULT

1. RECID

valid record No Default

- TR e

——— -

FIELD OPTIONS

FIELD

OPTIONS DEFAULT

2. AREA

T
. SN eEe .

a.

b.

one computer No Default
word, variable name.

the first computer

word to be used

to hold the data.

An element of a

dimensioned array.

. A e arame et NP
RN il Tade e
e . PR

b.

less than one No Default
or greater than the

length of the logical

record, it is inter-

preted as being equal

to one.

the first character

to be read.

a.

greater than the No Default
number of characters
in the specified
logical record or if
less than L1, it is
interpreted as being
equal to the last
character in the re-
cord.

the last character
to be read.

zero - is inter-
preted as being equal
to the last charac-
ter in the record.

Actual number of

No Default

of characters read.

41

LR

T @

. -‘.
-

R P - NP

r—
9
. -
N

SPECIAL NOTES

The programmer must set NDS in common before a call to this subroutine.
The programmer can read an entire logical record of unknown length by

setting L1 and L2 equal to zero. The programmer must define RECID,
AREA, L1 and L2.

EXECUTION PROCEDURES

The system will read the requested information (L1, L2) from the
requested record RECID located on data set NDS. The data will be stored

starting with word AREA. The system will return NC as the number of
characters actually placed into AREA.

42

= RECORD INSERTION
! DKINS
PURPOSE
ii To insert a record at the beginning of a point file or to insert a

record after a specified record in a point file.

GENERAL FORM
CALL DKINS (RECID, AREA, L1, L2)
where RECID is the logical recbrd

identifier after which
-the new record is to

be entered. (INPUT)

Is the record id of

the new record; (OUTPUT)

AREA is the first word of
the information to be
placed into the new
record. (INPUT)

Ll ' is the first character
in the record to receive
the first character in
AREA. (INPUT)

L2 is the last character
in the record to receive
information from AREA.
(INPUT)

FIELD OPTIONS

FIELD OPTIONS DEFAULT
1. RECID a. record id after No Default

43

,,,,,,,,,,,,,,,,,
.............................

; TRt —TITITE o
VDS @ - OEECURIONERS ~ SMAN/RNURS DICIRIHRCE

FIELD OPTIONS

FIELD QPTIONS DEFAULT

which the new re-
cord will be placed.
b. zero to indicate
placement as the
first record in
the file.
¢. computer output.
record id of new
data record.

2. AREA . the location in No Default
: core from which the

writing will start.

3. 1 a. 1is the first ‘No Default
character in the
record to receive
the first charac-.
. ter in AREA.

b. zero to indicate
start with the
first chracter.

4, L2 is the last charac- No Default
ter in the record
to receive informa-
tion from AREA.

SPECIAL NOTES

The programmer must set NDS in common. If the programmer is writing a
new record, FILENAME must be set in common. The programmer must define
RECID, AREA, L1 and L2 before calling this subroutine.

44

EXECUTION PROCEDURES
!! A new record will be created after record RECID. If RECID is zero, a

new record will be added to the beginning of the file. The system will
place the first character in AREA in the L1 character location in the
new record. Characters will be copied from AREA until the L2 character

has been written into the new file. The record id for the new record
will be returned in RECID.

r
ko
o
b
[

Ty
o . » e v e,

A
‘
[

»
.

BRI 4
)

v-v-' Y
1

e od Ao By A & o

AR WA

45

T e v

T e

v
1

S . . PP PP SR 3
Taa IS S IR S - Moo M, B e S s W Mt B 2 P o Ve .

OBTAIN LOGICAL RECORD LENGTH
DKLEN

PURPOSE

To obtain the logical record length of an existing record.

GENERAL FORM

CALL DKLEN (RECID)

where RECID is an existing -
logical record
id. (INPUT)

FIELD OPTIONS - None

SPECIAL NOTES

The programmer must set NDS in COMMON before calling this routine.

EXECUTION PROCEDURES

The system will obtain the length of record RECID in data set NDS and
return it in variable LRLEN in common. The system sits PREID and FOLID
also.

46

L,

W M ISR A e .;:~ -ml) R
A

I CLOSE A FILE
l_.;- DKLOS

2 PURPOSE

SRR

To make a file unavailable for writing.

GENERAL FORM

CALL DKLOS

FIELD OPTIONS - None

SPECIAL NOTES

The programmer must set NDS and FILENAME in common before calling this
routine. ' '

EXECUTION PROCEDURES

A1l records in core for FILENAME are marked for writing and will be
placed onto the disk NDS. The file will be marked as closed and no one
will Se allowed tc write into the file until another DHOPN is issued.

47

..........

FIND DATASET NUMBER
DKNDS

PURPOSE

To find the data set number when the data set name is known.

GENERAL FORM

CALL (DSNAM, OSNO)

where DSNAM is the name of .
. the data set. (INPUT) .
DSNO is the number of

the data set. (OUTPUT)

FIELD OPTIONS - None

SPECIAL NOTES - None

EXECUTION PROCEDURES

The system searches the data set name 1ist and returns the data set

number DSNO.
2ero.

I[f the dataset is not found, DSNO will be returned as

48

DATA HANDLER INITIALIZATION
DKNIT

PURPOSE

To initialize the data area in core for the data-handler and to estab-
lish the dataset name - logical reference number association.

GENERAL FORM

CALL DKNIT

FIELD QOPTIONS - None

SPECIAL NOTES

This routine should be called once at the beginning of the application
system. .

EXECUTION PROCEDURES

The system will establish all in core data elements prior to the first
use of any other data-handler subroitine.

49

S S ST ST GHTE SO WSOt -0 G

ettt T, . e e em .

-y Y L .
';'1J‘~,'.‘ SRR ‘L-.'..’. a T aW e

ARt < AALAILAL I * DALY
‘.
"
.,

OPEN A FILE
DKOPN

PURPOSE

To open a new or existing file.

CALL DKOPN (IOP)

GENERAL FORM

where I0P is the storage option

) code for a new file

only. (INPUT)
FIELD QPTIONS
FIELD OPTIONS DEFAULT
1. [0P a. new files only No Default
0 - neither point
nor pack

b.

1 - point only

2 - pack only

3 - point and pack

not used for .
existing files

SPECIAL NOTES

The programmer must set NDS and FILENAME in COMMON. IOP is only applied

if the file is new.

50

.
[
.-
Y-
L
i
=
-

) |

T T

LA £ JREMAAE

EXECUTION PROCEDURES

TN WS W W e

OPEN A FILE
DKOPN

The file FILENAME is opéned for writing in data set NOS using the origi-

nal storage option given by the original DKOPN.

exist, the file is created.

51

If the file does not

L g

~~~~~~~~~~~~~
...............................

R

- Aoty e et e e,

.
i
3

[
b

CALL DKPUT (RECID, AREA,

RECID
AREA

where

L1

L2

WRITE INFORMATION TO A RECORD
DKPUT

PURPOSE

To write information to a record.

GENERAL FORM

L1, L2)

is a record id in a

data set. (INPUT) (OUTPUT)
is the information to

be written. (INPUT)

"is the first character in
the record to receive the
first character in AREA.
(INPUT)

is the last character in
the record to receive data
from AREA. (INPUT)

FIELD OPTIONS

FIELD

QPTIONS

DEFAULT

1. RECID a.

b.

C.

zero - to write No Default
a new record at the

end of a file.

(INPUT)

a valid record id

of an existing record.

(INPUT)

record id of the

record written into.

52




FIELD OPTIONS

N FIELD OPTIONS , DEFAULT
(OUTPUT)
2. AREA . a. one computer No Default

word, variable name
b. the first computer

word to be used

to hold the data.

An element of a

dimensioned array.

3. L1 first character in No Defauit
the record to receive
information.

4, L2 a. positive - last No Default

character in the
record to receive infor-
mation from AREA.

b. negative - truncation
of the logical record
will occur. The last
character will be the
absolute valve of L2.

SPECIAL NOTES

The programmer must set NDS and FILENAME in COMMON.

EXECUTION PROCEDURE

[f RECID is initially zero, a new record at the end of the file will be
generated. The first character in AREA will be placed in the L1 charac-
ter position in the record. Copying will continue until a character has

53




WY i S T T T T :

[ S e s ST S S O R S
b

P-., ]

been written into the absolute value of L2. If L2 is negative, the
existing record will be reduced to L2 characters.

=
-
. -
..
b
9
-t
-
.
.e
WL T LI LI S - T LA A PYRRNARE T LT VU S e D il S . L,




................................

RENAME A FILE
DKRNM

PURPOSE

To change the name of an existing file.

GENERAL FORM

CALL DKRNM (OCDNM, NEWNM)

where OLDNM is the current file
name. (INPUT)
NEWNM is the new file

name. (INPUT)

FIELD OPTIONS - None

SPECIAL NOTES

The programmer must set NDS in COMMON before applying this routine.

EXECUTION PROCEDURE

The old name will be changed to the new name.

i 3 r1"
TR ¥
.

55

LR SRR AP A PRSP SO SPS Sr



........
P e L P N

. P S

L T T -

OBTAIN DATASET INFORMATION
DKSET

ii PURPOSE
To obtain the current information related to a specific document.

GENERAL FORM

CALL DKSET (LBLK, NBU, NTALL)

where LBLK ‘ is the block length
in standard units. (QUTPUT)
NBY is the number of blocks
used. (OUTPUT)
NTALL is the total number of blocks .

‘used. (OUTPUT)

FIELD OPTIONS - None

SPECIAL NOTES

The programmer must set NOS before calling this routine.

EXECUTION PROCEDURE

The system will set all three parameters and return.

56




END DATA HANDLER
OKXIT

PURPOSE
To clear all batters and write out all changes to the disks.

GENERAL FORM

A e e
. P A
o S

™

D AP

3. A R M
. el tie p eyt

. LTV

CALL DKXIT

s XA
'

““ FIELD OPTIONS - None

SPECIAL NOTES

This routine should be called once before exiting from the application
system. 4

EXECUTION PROCEDURES

The system will logically end all processing of data. All batters will
be cleared and data change written to disk.

57

.............. PSRN s - . . . AR
............................... P P R W SR WP ST S APV I P P




5!

ACCESS TO FILES

LOCK
UNLOK
PURPOSE
To obtain access to existing files.
GENERAL FORM
CALL LOCK (IND)
CALL UNLOK
where IND indicates control
requested
FIELD OPTIONS
FIELD OPTION -‘DEFAULT
1. IND a. 0 - unconditional No Default

b -1 - conditional

SPECIAL NOTES

During the actual execution of the data-handler in an interactive or
multiprogramming environment, several users may be executing different
copies of the code at the same time. Some of the users may wish to
access (to read and/or write) the same files at the same time. The
"multi-user” feature will permit concurrently executing programs to
share the use of files. Shared use of these resources must be strictl
controlled in order to ensure that one program does not interfere with
the correct execution of others. This control takes the form of syn-
chronizing use of these resources on the part of the programs invovled.

58




T T e
e p= s A . .
et ] . .

ACCESS TO FILES
LOCK
UNLOK

when a program requires use of a resource, it must request control of
that resource from the operating system. Control of a resource can be
either exclusive or shared. Exclusive control of a resource guarantees
that no other program will be granted access to that resource (write
access). Shared control guarantees that no other program will be
granted exclusive control of that resource, but other programs will be
granted shared control of that resource (read only access).

A.request for either kind of control of a resource can be either condi-
tional or unconditional. For conditional request, control is granted
only if the resource is immediately available. The requesting program
is informed as to whether or not control was granted. For unconditional
requests, control is granted as soon as the resource becomes available.
The requesting program may have to wait for an indefinite amount of
time. This eventuality is entirely transparent to the program itself.

When a program has finished using a resource, it must relinquish control
of that resource so that it becomes available for use by other programs.

REQUESTING AND RELINQUISHING CONTROL OF RESOURCES IS THE PROGRAMMER'S
RESPONSIBILITY. Two subroutines, LOCK and UNLOK, have been made avail-
able for this purpose.

Required Programming Before Calling LOCK or UNLOK

INTEGER RSRCS
COMMON /LOCKC/ RSRCS (7,40), NRSRCS

Before calling LOCK or UNLOK, you must describe the resources to be
requested or relinquished via the array RSRCS. Each column corresponds
to one resource. The number of resources described in RSRCS must be
defined in the variable NRSRCS.

Before a call to LOCK, RSRCS(2,I), RSRCS(3,I), RSRCS(4,1), and
RSRCS(5,1) must contain the name of the !'th resource requested.
RSRCS(1,I) must contain the number of the data set on which this
resource resides. RSRCS(7,I) should = 1 if exclusive control of this
resource is requested, 0 if shared control is requested. NRSRCS should
contain the number of resources, RSRCS(6,I) should not be used within a
processing program.

LOCK, as its name implies, is to be used to request control of
resources.

59

RN o oy o



ACCESS TO FILES
LOCK
UNLOK

LOCK has a single argument, the integer variable IND, which should
= 1 if the request is conditional, 0 if the request is unconditional.
If IND = 1, LOCK will return the status of the request via the argument
IND. IND =1 if control of all requested resources was granted, 0 if
control over none of the resources was granted due to the non-
availability of one or more of the resources. If the request was uncon-
ditional, then control of all requested resources was granted (IND was
ngt modified and still = Q). Note that LOCK (or UNLOK) never modifies
LOCKC.

UNLOK is to be used to relinquish control of resources. UNLOK has

no arguments, since control of resources is always relinquished uncon-
ditionally.

Application Rules

The following rules must be strictly observed:

(1) Control of a resource should not be requested until it is
needed; N

(2) A resource must not be used until after its control has been
requested and granted;

(3) a. The use of DKOPN, DKPUT, DKINS, DKLOS, DKSET, DKRNM,
DKXIT, or DKCLR in connection with a resource requires
EXCLUSIVE CONTROL of that resource;

b. The use of DKFIL, DKLEN, or DKGET in connection with a
resource requires shared or exclusive control of that
resource;

¢. The use of DKNDS, DKNIT, or DKDMP is unrestricted;

(4) Control of a resource must not be relinquished until it is
consistent with respect to both itself and other resources;

(5) Control of a resource should be relinquished as soon as it is
no longer needed.

(6) A resource must not be used after its control has been relin-
quished;

(7) The logic of execution should be such that: UNLOK is not

60

D T R L ST N L v A



.............................

ACCESS TO FILES
LOCK
UNLOK

called without a previous call to LOCK; two calls to
are never made without an intervening call to
%%%OK/EOCkifLOCK 1s not called without a subsequent call to
OK.

(8) a. The same resource must not be referenced by two different
¢olumns in RSRCS;

b. The maximum number of resources to be locked is 40;

(9) No assumptions may be made regarding the contents of a
resource at the time its control is granted.

Failure to observe one or more of the above rules will not neces-
- sarily result in the occurrence of a perceptible error condition (such
ﬁi _ as an ABEND), but resource integrity may nevertheless be seriously
- impaireds [t is most important that great care in coding be exercised.

61




B I AT N Al g L™ L, &, v & = = = ™Y
T ————. TN ST T R e, . . - . ]—

T T Ll Dt S 7 e Bt D ae e mime i e sl s e Sr—" A e n e e e o it e e

4 SUBROUTINE FUNCTIONS

Appendix B briefly describes the functions performed by each
subprogram. This list is ordered by subroutine name.

Subroutines are divided into two general types: (1) application
subroutines, and (2) function subroutines. The user's apply applica-
tion programs application subroutines to request the data handler to
perform work. The application and function subroutines use the func-'
tion subroutines to actually perform work within the data handler.

62

.....
.............
. - P Y P Ny S S o




> —i b e

LENC
e

3 ERROR MESSAGES

: The following data-handler errors are defined below:
DA DATA-HANDLER PACKAGE ERROR NUMBERS PAGE 1
!! ERROR  ROUTINE CONDITION i
. NO. i
1 DKNIT - SYST COMMON NOT INITIALIZED ' i
2 DKNIT - NOT ENOUGH SPACE FOR 1 BUFFER
3 DKGO - NBSGN + NABLK .NE. UBU
4 DKODS - OLD FILE NOT A DH FILE
5 DKODS - CAN'T PROCESS OLD FILE - 8LOCK SIZE T0O BIG 1
6 DKODS - ERROR READING OLD FILE HEADER F
.7 DKODS - ERROR OPENING OLD FILE , |
8 OKODS - ERROR OPENING NEW FILE }
9 DKARG - NDS INVALID
10 DKCDS - ERROR CLOSING FILE & SAVING r
11 DKCDS - ERROR CLOSING FILE & DELETING |
12 DKRBL .- READ INTO AN ACTIVE BUFFER - INTERNAL ERROR IN DH OR )
POLLUTED BUFFERS |
13 DKASG - CHARS IN FILE NAME MORE THAN ALLOWED -
14 DKWAT - INTERNAL ERROR - POLLUTED BT EMPTY - WAIT BIT IS ON
15 OKRBL - I/0 ERROR DURING READ
16 DKWBL - WRITE FROM ACTIVE BUFFER
17 DKWBL - 1/0 ERROR DURING WRITE
18 OKODS - CAN'T PROCESS OLD FILE - NBSGNNBBLK INCONSISTENT

63

L Y S .

PRSPPI S 1



...........

DATA-HANDLER PACKAGE ERROR NUMBERS (CONT'D)
ERROR ROUTINE CONDITION

WITH THOSE ASSIGNED VIA DKNIT

19 DKRNM - OLD FILENAME DOES NOT EXIST
: 20 DKGET - GET WORK THAN MAYGP CHARS
: 21 DKNSG - CONTINUED BIT NOT SET EXPECT TO READ MORE SEGMENTS-
A LOGICAL INCONSISTENCY IN FILE
;. 22 DKNSG - CONTINUED BIT SET BUT NEXT LRID = OLOGICAL

INCONSISTENCY IN FILE

23 DKSTO - LR SEGMENT NOT IN PP (NON-ZERO SEG COUNT IN HEADER)

24 DKSTO - PP HAS ZERQ SEGS; ILLEGAL RECID

25 DKFND/DKGL2 - ACCESS OF A DELETED LR SEGMENT

26 DKGET - ILLEGAL RECID (=0)

27 DKRNM - INVALID OLD FILENAME

28 DKRNM - INVALID NEW FILENAME

29 DKPUT - L1.GT.LRLEN+1 ON UPDATE (EXTEND)

30 DKPUT - FILE NOT OPEN

31 DKPUT - L2.NE.O ON ADD

32 DKPUT - TRY TO PUT MORE THAN MAXGP CHARS

33 DKPUT - INVALID FILENAME

34 DKPUT - L1.LE.Q ON UPDATE .

35 DKPUT - ABS(L2).LT.L1 ON UPDATE

36 DKDEL - LRID#0 FILE DOES NOT EXIST (RECORD DELETE)

3 DKDEL - INVALID FILENAME

38 DKDEL - PROTECTED FILE

39 DKDEL - SHARED DS

40 DKOPN - OPTION OUT OF RANGE

41 DKOPN - ILLEGAL FILENAME

42 DKOPN - OFT FULL -

43 DKSOF - FD FULL NO EXTEND YET

44 DKOPN - PROTECTED FILE

45 DKOPN - SHAPED DS

46 DKFIL - ILLEGAL FILENAME

47 DKGLS - ILLEGAL FILENAME

48 DKRNM - NEW FILENAME ALREADY EXISTS

58 DKFIL - CAN'T GET TO D.HAND TASK

68 UNUSE - O

69 UNUSE - D

70 DKGET - L1.LT.0

71 DKGET - L2.LT.0

72 DKGET - L1.GT.LRLEN

73 DKXBM - BIT MAP IS FULL. CANNOT BE EXTENDED.

74 DKXDS - ALL BLOCKS IN DATASET USED.

75 LOCK/UNLOK - NRSRCS NOT POSITIVE.

76 DKADT - NO ROOM IN DATASET TABLE.

64




6 PROGRAM CONVERSION :

The data-handler has been written to minimize the time required
to convert the system from one computer to another. All conversion
instructions are given as comment statements within the code of the
following subroutines:

DKBEX
DKBIN
DKCDS
DKDDF
DKERR
DKGO1
DKJCL
DKMVC
DKNCS
DKNDS
DKNIT
DKODS
DKPAK
DKRBL
DKTRC
DKUPK
DKWAT
DKWBL
DKXDS
SNAP
TIMDAT

The programmer performing this conversion should follow the
instructions given in Appendix C. Several subroutines have been
written in [BM BAL to improve executive speeds. These routines must
be rewritten if the data-handler is being converted for use on com-
puter systems other than the IBM 360/370 series. The following is a
list of the applicable routines:

DKBEX
DKBIN
DKDDF
DKJCL
DKMVC
DKNCS
DKRAK
DKUPK
TIMDAT

65




o After each program has been rewritten in the new assembly lan-
> guage, the code should be added to the documentation tapes immedi-
ately after the previous version. The previous code should not be
! removed from the documentation tapes. This documentation system will

allow the data-handler to be loaded in a relatively short time period
onto a new computer system that is using a previously used assembler
with minimal resources.

1]

FTIRe -
DA RN

b

b

]

o
.
.

66




'

A ANENEAR
MM e e
|‘lJ S .‘ "

7.v
LA
ials's

Y

A
4

7 DOCUMENTATION TAPES

The documentation tapes provide a complete historic record of
all computer programs ever written for the data-handler. A1l tapes
are unlabeled, recorded at a density of 800 bits per inch (BPI), and
blocked 800 characters per physical record. Each logical record is
80 characters in length.

The programs are listed in alphabetical order. Assembly pro-
grams are given in chronological order. The computer system and
operating system version should be recorded in each assembly program
in the first few comment cards.

A1l assembly programs are saved to allow conversion to a new
computer assembly language with minimal resource expenditures. Each
program is written as a separate tape file. The first tape file con-

tains an index of all subsequent files. The format of this index is
shown below:

67




DATA-HANDLER TAPE FILE INDEX

- ' | LAST
u FILE PROGRAM ~ SOURCE DATE DATE

NO. NAME LANGUAGE WRITTEN MODIFIED

3--10 13--20 23--40 43--50 53--60 Card Columns

Right Left Left DD/MM/YY  DD/MM/YY - Data Form
Justified Justified Justified

>
Wf aliatgets o Teo e
N » " " .!"_, s

Ly It i
:{ ‘c.‘ PR

R IR RS
R (SR AT IAPA RS
ot N




.......................
....................

e 8 TEST ROUTINE

The last files on the documentation tapes contain a test routine
that checks each application subroutine field. The correct results
of this test routine are given on the tape for checking purposes.

A J
H

~ 2 i L4 it
v L '.i L AN i
oS AP A

1 Oy

Ty WY v 8 e
a4 ve W Al Tl
» 8 A YD a 'Em e e

69

| I* < SN




_____________________

9 CHANGES TO DATA-HANDLER PROGRAMS

As new functions are implemented into the data-handler, the fol-
Towing steps should be rigidly followed. Execution of these steps
will insure that the changes are performed correctly and documented
completely.

STEP ONE - Write a FORTRAN program, well documented with comment
statements. Follow the standard documentation procedures below. If
an existing program is being changed, change the FORTRAN program
before changing the assembly programs.

Program Name: written as in the first line of the function or subroutine, with
arguments.

Function: brief description of the function of the program. ad
Author: author's name, date of first writing.

Modifications: author, date and brief description of the reason for the
change(s).

Language: programming language.

Calling Sequence: description of arguments and function results.

Routines Called: 1ist of subroutines and functions called by the program.

Tasks or Modules: tasks or modules containing this routine.

Variables: a description of all variables used in the program.
COMMON variables will generally be described in a "main"
program, referenced in this program. The structure of

. arrays and meaning of variables should be fully described.

Program Logic: A detailed description of the algorithm(s) used

and the flow of the program. The comments generating

this portion of the. documentation will normally be

scattered throughout the program in complete English
sentences.

STEP TWO - Change the last date modified on the data-handler
tape ¥ile index.

STEP THREE - Change the FORTRAN compile listing on the documen-
tation tapes.

70"

I L L T S
.............................




SfEP FOUR - (If required) - Write the assembly programs.

. STEP FIVE - (If required) - Change the last date modified on the
| data-handTer tape file index.

STEP SIX - (If required) - Change the assembler listing on the
documentation tapes.

A STEP SEVEN - Change the test routines to completely test the new
' : feature.

STEP EIGHT - Execute the entire test routine package and'replace
the results on the documentation tapes.

.
S
N
[
o
b
b

STEP NINE - Revise this report as required. Document all
revisions Tisted for this document at the beginning of the report.

STEP TEN - Revise all application programs as required by the
change 1n the data-handler.

71

N S AR oW N A




........................

APPERBIR A ~

DATA HANDLER
DUMP EXAMPLE

....................
......




s ) '

¢

00000000 ¢ 0 0 " " " v " ..._.:....;_a ".“M“teoo
QusaM M TACAN B 4SUN GIBn NSEIN “1dSUN HASAY HISUN Cremscaafiifiiyce=-ned fi % i
M weax 0 2 cam AWIND

z o
[ J
. 43444100 501 12 v2 4Ge 0 | 92 ._:u;::. _ueome.o S
‘ ASON SAE0% UISAN USSAN VJEUN HISAY YdSUN Covececcmach{SONea=cad> (1TEON
® amggy NMEON 1d8 s 1 eon Anin3 |
Y
2 21 4] (TF 2
® NEQL  €a1IL  van Lseatl -
30ve 138 VivQevs - 4
® v 9 952 2¢ 2 ' os 0 o - Oode 102 Ny
NIGEN NOSGN Xwlan NHEIT MI4Y ABdaM  ¥INAL HINGT  ¥IHOL  MINAD 004 -
b £3000493532383230000000 | 0 00000000 00000000 3TAVL WIiSAS O |
emcepNI]de~== L1¥i§3 HIWT Ol3nd A1704 CrennnyN |l Jore=> SIN .
e . k
. : D
[\ . =~ 4
o e e e i -
C 31000000 00000000 00000000 J00u0u0uh 0000000 00000000 00000000 @0000GOO oLseve o
$3£02210 $30000S0 £3230323 O0NOPOLOV (0000000 444£0000 00000000 ©0000000 00000000 00000000 00000000 000MOO0O ongeve 9
00000000 00000000 00000000 W©1000000 00000000 00000000 00000000 00000006 00000000 00000000 00000000 (0000000 olcey2
< 00000000 44444100 10000000 69000000 S1000000 ®1000000 00100000 00000000 0000000 00100000 pUSISI2I @323141D 032ev2 N
10005000 20000000 Q0000000 VY0000000 20000000 10000000 00000000 QO00000GO 00000000 170000000 00000000 €1000000 on2eve .
21000000 11000000 03000000 20000000 7J0000000 00000000 41000000 3300000 Q1000000 OPONEIVI O009IVIIST OULN2I9N og2eve Y
« 00r0236) 20000000 L0000000 60000000 0000000 90000000 S$0000000 BHOOONNLO 20000000 10000000 230000000 ¢I000000V 0S26v2 -
60000000 90000000 L0000000 90000000 S0000000 10000000 60000000 0L0000w0 @ST00000 €3000000 A1000000 32920000 0226v2
4as00000 11000000 03000000 30000000 8OLODOOD VOODODVO 60000000 €O0V00000 L0000000 90000000 G0000000 wn0OCN0OO oqi6ve . A
. £0000000 20000000 10000000 11000000 §1100000 43000000 QGS00000 $£0000000 20000006 (0000000 E£0000000 »0QOONND 03t6v2 o
£0000000 20000000 150000000 ©0000000 @1000000 0000000 00100000 ¥B920060 63000000 00000000 00000000 0VQOGOOO 06l6v2 .
00000000 00000000 00000000 00000000 00000000 00000000 00000000 0000LOLO 00000000 00000000 00000000 0NNONGDL 09t6v2 o
@ 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 OULNGVOOO 00000000 00u0CNYO L T4 T H g
00000000 00000000 00000000 00000000 00000000 00000000 00000000 44444443 00000000 00000000 10000000 000NNVGO ooleve
00000000 00000000 00000000 00000000 00000000 00000000 00000000 0Q000VOLO 00000000 00000000 LOD0000O0 90VLANDY 0Qoev2
- S$0000000 00000000 00000000 00000000 00000000 00000000 00000000 02000000 02000000 10000000 00000000 ULVIOVYD ovo6v2
05000000 130000000 02000000 (0000000 90000000 (0000000 WwODOOLOO 02000000 00000000 00000000 00000000 00)000Q0 oLoev2
‘-
® . © 84900100 =iWIOJd AMINI
99480000 bR4pA000  9490pT00  046§£2000 ~ d6laed
g 00000000 00000000  OT0Juubn  04L0vi2¢ 9000 1SN
@ 9020000 00000000 04921200  3802Q0ce €uo0 nri
00000000 ©30434443  9AI80200  wld2122v v900 ¥uIANY
o ) 00000000 MiJad4444 0UILI200  H3Q60220 w00 INING
) 00000000 M3044444 OVUGUTI00  DU2SV22w fo00 vl
¥ ‘93y 0 93 ST 9 (AR | ] NE1 NOM4 037TvD  INILNOH MIVEIIVEL
® . *39¢NIVd UITONVYH viva NI 0F  NONUIveye
. 3
W..‘ © e emmmm o w vt vay ARy v vy VIR LY, - - - ..P;l!-.b«..< -




SRR o ARSI DTS

o/
00000000 00000000 00000000 00000000 000000h0 0NV Dh Hwougoonon V0000000
9 00002100 00000000 00000000 00000000 00000000 00000000 00000000 wovoeyvov
00000000 00009100 00000000 00000000 00000000 QUBHNO00 000uoV00 06000000
41000000 00000000 00005100 00000000 0000v000 0060apiHod 00000000 00000000
e 00000000 91000000 00000000 0o00n100 0vovno0oL soveH00Y 00000000 00000000
00000000 00000000 S1000000 00000000 00005100 VRUDOBLO 00000000 00000000
00000000 00000000 00000000 21000000 00000000 ounopeton 00L00004G 00000000
o 00000000 00000000 00000000 00000000 fi000000 0000VUUO oocuitoo 00000000
00000000 009000000 00000000 00000000 00000000 2lupangyo 00000000 0000000
00000000 00000000 00000000 00000000 00000000 00vUNLYO 11000000 06000000
® 00004000 00000000 00000000 00000000 000060000 00009000 00ULUOO0n vloovoeo
00000000 00003000 00000000 00000000 00000000 [T 00000000 00000000
30000000 00000000 00004000 00000000 00000000 000Q0u000 00000000 ovuovoo0
® 00000000 30000000 00000000 00003000 00000000 000a00Gy0 00000000 00000000
00000000 00000000 40000000 00000000 0000A900 00000000 00000000 00000000
00000000 00000000 00000000 J0000000 00000000 0ovovone 000e6000 00000000
[ 00000000 00000000 00000000 00000000 60000000 0000VOLO 00006000 00000000
00000000 00000000 00000000 00000000 00000000 Yoooovoy 00000000 00008000
00000000 00000000 00000000 00000000 00000000 [T T 60000000 00000000
® 00001000 00000000 00000000 00000000 00000VOL 00000000 00000000 H0000000
00000000 00009000 00000000 00000000 00000000 000n0000 000000009 00000000
£0000000 00000000 00005000 00000000 00000000 000NVHLY0 00000000 0006000V
® 00000000 90000000 00000000 0000n000 00000000 0vo00n00 00000000 00000000
00000000 00000000 $0000000 00000000 00005000 00V00V0o YuLO0000n 00000000
00000000 00000000 00000000 ®0000000 00000000 000uZ000 00000000 0000000
o 00000000 00000000 00000000 00000000 £00000v00 00000000 g0001000 00000000
£0000000 00000000 00000000 00000000 00000000 00GNBUVO 10000000 00000000
- 00000000 3££00000 £4000000 10000000 00000000 20000000 00000000 [TTY Y 1Y R
o 9409£3%2 90090414 9494VL94 £4vLS3Td . 02000000 02000000 10000000 00000000
80000000 01000000 10000000 02000000 60000000 80000000 10000000 v0000000
02000000 i 08931493 000023940 0002262 ’ gl1000000 gooovnoo ovonelwd 00100000
® 00100000 ° 00000000 00000000 €L000000 22000000 000000YL 00000000 80002000
0 00000000 00000000 10000000 o 0 0 0 0 1916 |
o NN IdigN REIT)] CmanceNIiON-vend> MELON INLON  JASHN  NILEN  dil4Xd  1aN ddlgd  ol1ax
e B - i ,»nuHH
d 00000000 00000000 00000000 00000000 0000000u 000 0VbQ0 Q0000000 00000000
9 0 00000000 00000000 00000000 v [] 0 0 v 0 0
NILGY  [diaw td41an CancwaNiieaa=r MUELAN JHLON  4O1uN NILHYN  dAleX LlEX ddi@n oo
® e9¢ul L g2
9El  Hi€N] g
o _ i e ) -
£300P0052£32393230060630D 10502000 0 v 00000000 00000000
mv eenneliNI] jnenaa  G440% #340% HN JON 300 V340N
(] £30h00S2£323932300238212 10101000 0 5 00000000 00000000
eecashNY] demeee Q440N @40% HNJON 1140% 14400
- o= . - ’
’ 3

wee
092
ese
(}24
Q2
woe
0oe
26l
bol
91
491
a9l

w4000
v4000
¥3000
03000
@«quoo
00000
283000
03000
guo00
08000
evuoy
ovooo
26000
06000
wHOOO
0000
@luo0
0L000
H9u00
O69u0L
®S000
06000
[T0011)
0p000
NEOO00
0geo0o
gf2uvon
02000
gjoano
0fuvvo
80000 «
00000 0

T~
<

] L
MWL sHiaN
62 “ON ANENI

s et —————

000006 ¢

0 (]
1alan  ENlex
I °ON AMINI

¥ o9
193N 16101
ITuVL ¥34400% ey

IuveL #IL1SAS dlO
Conasaly Luazﬂ'i-v
e “ON ANINI

IMMVYL »ILEAE GV
A'l--':&hox.'llv
' 0N AMIN3

set
§ 303N

(111
18401

VL 3114 RidDees




- L N .
~ ‘ ] 100610 vioonloo X
10004100 21000000 Alepatop owoouvlvo H v
s sto0L100 w"w“wnun L1005100 9500ri00 L3 T3 ¥ U nlooZloo sluolfao ~.=¢e.o=
- 110034000 01003000 40000000 30002000 auLofun INGOVO0O ﬂn””ﬂenn mnnuu““” 1
oosom pOOV20V0 (] E
6000£000 80009000 Looosood 000b000 s000% SHIINIOG (OHYANIVH/UHE U 1) 26 ITULNT 1
Le 62 2566
, 10101 doial  pdinl ’
N WNIO0 ALTANING LHewe .‘
. 1
o * 1
4
1
o . )
°® "
A
@ -
B - . . s aee. e Ll A R - . e e = a
{ 00000000 00000000 00000000 00000000 . 000U0000 [T ) 00000000 00000000 e4000 @02 A
00002100 00000000 00000000 00000000 00000000 00000000 00000000 00000000 04000 902 ' A
00000000 00009300 00000000 00000000 00000000 00000000 00000000 00000000 83000 2€2 . 4
( . 41000000 00000000 00005700 00000000 0u000000 00u00000 00000000 00000000 03000 »22 e, L
00000000 91000000 00000000 0000nt100 ‘. 00000000 00000000 00000000 00000000 20000 912 S L
00000000 00000000 §1000000 00000000 00005100 00000000 61000000 90000000 0000 vwoe 3
{ 00000000 $210221) £300005) £3238323 ’ 949303240 00002100 09000000 »1000000 3000 go2 :
00000000 00000000 §2£0231) £3000QS) £3230323 493324 Q0001100 00000000 03000 261
£1000000 00000000 00000000 $3£02212 £30000S) £3219323 ©493932a 00000100 Pn0ov bRl
. 00000000 21000000 . 00000000 00000000 SJ3£02212 £30nh0S) €31230323 t£493832¢ 0000 928
00004000 00000000 11000000 . 00000000 00000000 £3€0221) £3000ASI £3238323 avoov ¥9¥
24939324 00003000 00000000 4 01000000 00000000 00000000 $31Q0212¢11 £3000Q5) ovuyo 09§
£€323¢9323 14939324 00000000 00000000 40000000 00004000 00UV00000 £3£0221) 86000 251
£30000S32 £3239323 0nsE3nInd £0002000 07000000 30000000 00000000 00000000 06000 bl
€3£0231) £3046082 $3238323 (1.1 2] JeT} 00004000 0000vC00 Q0000000 00000000 Qw090 9¢1 T
00000000 $2£Q2212 £300005) £3239323 0v9lf4f3 0000VOO0 00000000 30000000 0guuo 921 ’ .w
00000000 00000cC00 63£04231) £30900S2 £323vw323 opSu6aLQ 00006000 00000000 fLoo0 021 o
. 80000000 00000000 0000000 $3£4221) £3001US) £3219329 09136040 00008000 0L000 211 '
L 00000000 ¥0000000 00000000 00000000 $3%02212 £30nnas) £3218323 o0nsaidia #9000 vol
00002000 00000000 60000000 00000000 00000000 S eI £300008D . £32368323 09000 96 o
00935393 00009000 00000000 80000000 00000000 ovougooe | §JITA231) i3000USD ¥Su00 9@ L
. £3239323 069394092 00005000 00000000 L0000VOD poONDUNO 00000000 $I§0221) 05600 09 -
) £30000S) £3239323 orgI9Qaw) tooonoo00 00000000 QUUNONND 00000000 00000000 o000 2¢ W
§2£0231) £3000nQS) £3239323 0y6a2303 2000gv00 oRVEONY0 Soeylo0no 00000000 0rovd v9 K
N 00000000 $2£0221) £30b00asI £32493213 . 08Y2L023 10002000 00000000 ¥0000000 95000 9¢ E
00000000 00000000 $3£02212 £3001aSI £3239323 0606 ) toootovo 00000000 0fs0nQ 9
£0000000 00000000 00000000 §$3§¢221) . £3000QS) £3234324 0n23E21) 00000000 Q2040 0Op
(. 00000000 3€£00000 £9000000 10000000 - 00000000 20000000 00000000 0rovOvo 4 02000 2%
93095382 90090414 6403vL94 £4YLS4T4 02000000 62000040 10000000 00000000 81000 #2
90000000 01000000 10000000 02000000 pPO00VLOY 0UQVAQG 100006000 #0000000 01000 9]
.- 02000000 0v93148) obob239a 0vnQa2l6) 21000000 qouneoao [ 111 1] 3 ) 00500000 90000 ©
00300000 00000000 00000000 82000000 22000000 0000000 00000000 90002000 00000 © N
\Y
0 00000000 00000000 10000000 © 0 0 0 [} site % ' 3 |
NILON  Idiav 1408 CuacasNijQNencand> MELON INAAN  d0luM  NIRUN  HildN Ve ddign oL iad  SNieN
. . 1§ *ON ANIN3 .
V. = y
' 1)
. B . ey - e.vories rv ) V2SR 278




APPENDIX B: SUBROUTINE FUNCTION
B.1 APPLICATION PROGRAMS

SUBROU-
NUM- TINE
BER NAME  FUNCTION
1. DKDEL
2. OKFIL
3. DKGET
4, DKINS
5. DKLEN
6. DKLOS
7. DKNDS
8. DKNIT
9. DKOPN
10.  DKPUT
11. DKRNM
12.  DKSET
13.  DKXIT

ROUTINE TO DELETE FILE FILNM (IF RECID=0) OR LR DECID IF NOT O
FILE DOES NOT HAVE TO BE OPEN BUT MUST EXIST FOR RECORD DELETE FILE
DELETE OF NON-EXISTENT FILE IS NOT AN ERROR

ROUTINE SET FSTAT (COMMON) TO INDICATE STATUS OF FILNM (COMMON)
GET LOGICAL RECORD RECID IN DATA SET NDS (COMMON)

INSERT LOGICAL RECORD INTO DATA SET NDS (COMMON) IN FILE FILNM
(COMMON) AFTER LR RECID.

ROUTINE TO GET LENGTH OF LR RECID IN DATA SET NDS (COMMON) .
ROUTINE TO CLOSE FILE FILNM (COMMON) IN DATA SET NDS (COMMON)
GIVEN DATA SET NAME, RETURN DATA SET NUMBER
INITIALIZES ALL DATA HANDLER VARIABLES
OPEN A FILE ROUTINE.
PUT LOGICAL RECORD INTO DATA SET NDS (COMMON) IN FILE FILNM (COM)
ROUTINE TO RENAME FILE
ROUTINE TO RETURN INFORMATION ABOUT DATA SET NDS

ROUTINE TO LOOP THRU ALL DATA HANDLER DATA SETS (NDA) AND CLOSE
EM DOWN

NP P U U U LU R WP P e e Je Tee SR e e




........

SUBROU-

TINE
NAME

B.2 FUNCTION PROGRAMS

FUNCTION

DKABP

DKALO

DKARG
DKASG

DKBEX
DKBIN

DKCBL

DKCDS
DKDD1
DKDD2
DKDD3
DKDD4
DKDDF

DKDDS

DKDLF
DKDL
DKDMP

ADD TO BUFFER PRIORITY: CURRENTLY KEEPS AN ORDERED LIST OF BT
ENTRIES BY MOST RECENT USE. N IS IGNORED.

ROUTINE TO TURN OFF THE PROTECT BIT FOR FILE FILNM IN DATA SET
NDS. FILE NEED NOT BE OPEN

CHECK VALIDITY OF NDS AND OPEN DATA SET IF NOT ALREADY OPEN

ROUTINE TO ALLOW USER.TO CONNECT A DATA SET NUMBER NSW TO A
PARTICULAR LOGICAL UNIT NUMBERLUN AND FILE NAME FNAME.

INTEGER FUNCTION TO EXTRACT NUMBR BITS FROM SOURCE WORD

REAL FUNCTION TO INSERT THE LOW-ORDER NUMBR BITS FROM ISOR
INTO RESLT AND RETURN IN REGISTER. RESIT IS NOT MODIFIED.

ROUTINE TO COMPACT A BLOCK AT BUFFERIBTADD CALCULATE NUMBER OF
SU'S TO MOVE FROM POOL SU OTH DISPL IFROM TO POOL SU OTH
DISPL ITO BY SETTING NO. SU'S IN BLOCK FROM DST AND NO. SU'S
FREE AT ¢ND OF BLOCK (IN PR HEADER) MOVES SU'S ONE AT A TIME
WITH UKPAX AND DKUPK AND UPDATES SU'S FREE AT END OF BLOCK.
ASSUMES IFROM.GE.ITO EVENTUALLY MUST ALSO MODIFY FST

OP SYS FILE INTERFACE ROUTINE TO CLOSE A DATA SET

GET ALL MACHINE CHARS IN MACH (1-13)

DATA SET DUMP ROUTINES

DATA SET DUMP ROUTINES

NOT WRITTEN

ROUTINE FOR DYNAMIC DEFINE FILE STATEMENT IN OS FORTRAN ISSUES
OPEN ON DDNAME FTNNFQO1

DUMP DATA SET ROUTINE TO PRODUCE A FORMATTED DUMP OF DATA SET
NDS

ROUTINE TO DELETE ENTIRE FILNM (COMMON) IN DATA SET NDS (COMMON)

RROUTINE TO DELETE LR (NSGNBL) IN FILE FILNM DATA SET NDS
DATA HANDLER

79

INOUE SPIT IR 1)

M S

"

-“.
3

-

B

-l

-—



...........................

............

SUBROU-
TINE
NAME

FUNCTION

DKDSG

DKEBF

DKERR

DKFBF

DKFND

DKGBF

DKGBL

DKGBM

DKLG1

DKGLS
DKGO

DKGO1

ROUTINE TO DELETE THE SEGMENT WHOSE LR HEADER IS IN H IN BUFFER
IBTADD ASSUMING KBTPP SET BY DKSTQ (VIA DKFND) DOES NOT PRESENTLY
COMPACT THE BLOCK OR MODIFY FST

ROUTINE TO EMPTY THE BUFFER AT IBTAD WHOSE HEADER IS IN D CHECKS
FOR PREVIOUS I1/0 COMPLETION WRITES AND WAITS IF WRITTEN INTO AND
ZERO ENTRY AND D

CKECKS ERROR HANDLING SWITCH AND EITHER PRINTS AND ABORTS OR
RETURNS WITHOUT SAYING ANYTHING

FILL BUFFER ROUTINE: BT ENTRY AT IBTAD IS IN D GET BLOCK NBL OF
DATA SET NSW IN AND WAIT FOR READ COMPLETION

ROUTINE TO LOCATE BLOCK NBL SEGMENT NSG OF DATA SET NSW.
SEARCHES BT'S FIRST*THEN READS INTO CORE RETURNS IBTAD=THE BT ENTRY
DISPL WHERE PR IS DOES NOT SET MEMORY

GET A BUFFER ROUTINE: CHOOSES THE NEXT AVAILABLE BUFFER USING
DKSBF ROUTINE SETS ITS PRIQRITY HIGH WIHH DKABP AND EMPTIES IT WITH
DKEBF. D AND BT ENTRY WILL BE ZEROED AND ALL IO FINISHED ON RETURN.

ROUIINE TO GET A BLOCS FROM FREE SPACE TABLE OF DATA SET

NDS WORD FROM BIT MAP STORED IN DST (IDSWD) NUMBER BST (IDSWN)
BITS CORRESPOND TO BLOCKS NUMBER RT TO LEFT IN EACH WORD IF DST
(IDSWN) = 0, NO WORD THERE. ALWAYS ASSUME WORD MUT BE REPLD
USES INTERNAL ARRAY A TO STORE DST ENTRY

ROUTINE TO GET A BIT MAP WORD FOR NS WHICH HAS AT LEAST ONE
BLOCK AVAILABLE (BIT=0) WITHIN THE BLOCKS INITIALIZED

ROUTINE TO GET THE SEGMENT OF THE LR (NSWNSEGNBLK) CONTAINING NCS
INTO CORE BUFFER AND SETS D=BT HEADER H=LR HEADER SETS QPPP FOR
BUFFER CONTAINING DESIRED SEGMENT ALSO SETS PREID FOLID AND LRLEN IN
COMMON FROM EITHER LAST BT MEMORY IF SEGMENT FOUND THERE OR FROM FIRS
AND LAST BUFFER EXCEPT FOR THE LOOP TO GET LAST SEGMENT

ROUTINE TO GET LAST SEGMENT OF LR (NSGNBL) IN NDS
ROUTINE TO INITIALIZE THE DATA HANDLER BUILDS NECESSARY TABLES

FROM ARRAY IN BLANK COMMON STARTING AT WORD ISTRT FOR ILEN WORS -
ALSO SETS CONSTANTS AND INITIALIZES VARIABLES

SET MACHINE PARAMETERS IFR IBM 360/370 WITH 0S

|

R
[N

B u-set s
} SRAAN

T rd
s a g

g

daale iay

RS P XY




SUBROU-
NUM  TINE
‘BER  NAME

A AR St M Dk o/l it e M M g Lo e

FUNCTION

DKIDS

DKJCL
& DKMFS

DKMIC

DKMIR

DKMLR
DKMST
. DKNCS
DKNSG

DKOUT
DKPAl
DKPA2
DKPA3
4 DKPA4

3 DKPAS
DKPAK

DKPAR

ROUTINE TO INITIALIZE THE RECORDS IN A NEW DATA SET IN
PARTICULAR TO SET UP BLOCK 1 WITH TWO SEGMENTS:

ROUTINE TO SEARCH THE FST AND LOCATE THE BLOCK WITH THE MOST
FREE SPACE WHICH IS RETURNED IN NBL.

ROUTINE TO SEARCH IN CORE BUFFER TABLES FOR ONE WITH DATA SET
NDS FILENAME FILNM AND RETURN THE ONE WITH THE MOST FREE SPACE.

ROUTINE FOR BUFFER MEMORY ID RESET TO ENSURE THAT WHEN A NEW
LOGICAL RECORD (RID) IS ADDED OR INSERTED THE PRECEEDING (NSGPNBLP)
AND FOLLOWING (NSGFNBLF) RECORDS (IF THEY APPEAR IN ANY BT MEMORY)
HAVE THEIR FOLID AND PREID ENTRIES RESPECTIVELY EQUAL RID.

ROUTINE FOR MEMORY LENGTH RESET IN BT ENTRIES

SETS BUFFER MEMORY PARAMETERS INTO D

ROUTINE TO COMPUTE THE NUMBER OF CHARACTERS IN A LR SEGMENTS

ROUTINE TO GET NEXT SEGMENT OF THE LR WHOSE HEADER IS IN H INTO
A BUFFER SETS BT ADDR IN IBTAD BT ENTRY IN D.

BRINGS ACTIVITY ON THIS DATA SET TO AN ORDERLY HALT CLOSE ANY

OPEN DH FILES IN THIS DATA SET AND WAIT FOR ANY BUFFER I/0 ACTIVITY.

PUT ADD RECORD BUFFERING LOGIC - ACTION 1: LR WILL ENTIRELY
FIT INTO IN-CORE BUFFER AT IBTADD ~

PUT ADD RECORu BUFFERING LOGIC - ACTION 2: LR PLACED IN REMAINDER
OF THE IN-CORE BUFFER AT IBTADD AND THEN IN ONE OR MORE NEW
BLOCKS. THIS LATTER IS DONE VIA DKPA4.

NOT WRITTEN YET

PUT ADD RECORD BUFFERING LOGIC - ACTION 4: LR MUST BE PLACED
IN ONE OR MORE NEW BLOCKS

PROGRAM NOT WRITTEN YET

ROUTINE TO PLACE ICT WORDS OF D (IN SU'S, NBU BITS) INTO POOL
ARRAY

ROUTINE TO DETERMINE THE PUT ADD RECORD BUFFERING RULE

P P T PR I . P AL S S

.

i |

gy

Trely
S .
PUAPAPUIPES o i |

g




-------- ~ - - .
Ao i drae o s o ae aras as e e i i S e PR N e T e e e e

SUBROU-
NUM  TINE
BER NAME  FUNCTION

t
3

4

4

/

[

DKPBL PUT BLOCK NBL BACK IN BIT MAP OF DATA SET NDS SO IT CAN BE REUSED
DKPBM ROUTINE TO REPLACE THE NTH SU (IN WORD) IN THE BIT MAP OF NDS

DKPMD(A) ROUTINE TO UPDATE THE PTR IN THE LRID WRITTEN PRIOR TO CURRENT
ONE IF IN CHAIN MODE

DKPRO ROUTINE TO SET PROTECT BIT FOR FILE FILNM IN DATA SET NDS
DKPSG PUT LR SEGMENT ROUTINE USED TO ADD A NEW SEGMENT AT END OF BUF
DKPSH ROUTINE TO REPLACE THE LR SEGMENT HEADER IN H INTO BUFFER
DKRBL READS BLOCK NBL FROM DATA SET NSW INTO BT ENTRY IBTAD(IN D)
DKSBF SELECT BUFFER ROUTINE

DKSFD SEARCH FILE DIRECTORY ROUTINE IN DS NSW

DKSOF SEARCH OPEN FILE TABLE ROUTINE FOR FILNM (COMMON) IN DATA SET NDS -
(COMMON) RETURNS IOFAD: o

DKSTQ ROUTINE TO LOOP THRU BT ENTRY IBTAD AND LOCATE SEGMENT NSG

DKTLR ROUTINE TO TRUNCATE CURRENT SEGMENT AT CHAR NCE COMPACT THE -
BLOCK AND DELETE ANY FOLLOWING SEGMENTS. P

DKTRC ROUTINE TO PROVIDE A TRACEBACK AND OTHER INFO WHEN ERROR CALLED
BY: ODKERR IBM OS VERSION H LEVEL OBJECT TIME SYSTEM

DKUPK ROUTINE TO PLACE ICT SU'S OF POOL ARRAY P BEGINNING AT ISTRT+1 s
INTO D (ONE SU PER WORD) -

DKWAT WALT ROUTINE: WAITS FOR BIT IBIT TO CLEAR IF SET IN BT STATUS
WORD. ALLOWS ASYNCHRONOUS I/0 OPERATIONS WITH THE PROPER QP SYS
INTERFACE SUPPORT (DKRBL AND DKWBL).

3 DKWBL WRITES BLOCK NBL FROM BT ENTRY IBTAB(IN D) INTO DATA SET NSW

DKWIN ROUTINE TO SET THE 'WRITTEN INTO' BIT IN BT ENTRY IN D
3 DOES NOT REPLACE D

DKXBM ROUTINE TO EXTEND BIT MAP BY ONE SEGMENT
DKXDS ROUTINE TO EXTEND DATA SET

90

PP U U R TR W )

....... . . . . .
Myt M. v et D P L - - . - T, D - P P
£‘~L’-.-.-.r."~).~n"_- D Tl TP R N U AP AN P I T SLEY T WAl SO v W . v



NUM
BER

SUBROU-

TINE
NAME

FUNCTION

k

DKXFD
DKXLR

XO0R

DKODS

OKOMP

GOT236

BITEX

BITIN

1COPY

PACK

SNAP
SYSCM

DKMVC
DKBNF

OKBXF

AND
DKCMP

EXTEND FILE DIRECTORY OF DATA SET NDS (COMMON) BY ONE BLOCK

ROUTINE TO EXTEND THE LR (NSGNBL) WHOSE LAST SEGMENT IS IN BT
ENTRY IBTAD,D AND WHOSE LR HEADER IS IN HEDLR

OPEN DATA SET TO HOST OP SYSTEMS FILE CONTROL SERVICES

DUMPS DATA HANDLER COMMON AND PQOOL THIS ROUTINE IS A FUNCTION OF
MACHINE CHARACTERISTICS SUCH AS CHARS PER WORD AND CHARS IN A DATA
SET NAME

THIS ROUTINE IS ENTERED BY THE FORTRAN EXTENDED ERROR HANDLING
ROUTINES

RIGHT JUSTIFY THE BITS TO BE RETURNED

THE RIGHTMOST NUMBR BITS OF SOURC ARE INSERTED INTO RESLT
BEGINNING WITH BIT START OF RESLT. THE REMAINING BITS OF RESLT
ARE NOT MODIFIED

COPIES NUM CHARACTERS FROM SOURC (STARTING AT SFST) TO DEST
(STARTING WITH DFST) ALL OTHER CHARACTERS OF DEST ARE UNCHANGED

PACK NUM CHARACTERS INTO THE STRING DEST STARTING WITH CHARACTER
L2 OF DEST. THE CHARACTERS ARE TAKEN FROM THE LEAST SIGNIFICANT
CHARACTER OF THE ELEMENTS OF THE ARRAY SOURC STARTING WITH
STANDARD UNIT L1.

INITIALIZE SYSTEM COMMON TO THE STANDARD VALUES REQUIRED BY THE
PARTICULAR MACHINE IMPLEMENTATION

MOVE NC CHARACTERS TO A(TO)+ITOFF
ROUTINE TO INSERT AN INTEGER FORTRAN WORD INTO A REAL
FORTRAN WORD

ROUTINE TO EXTRACT AN INTEGER FORTRAN WORD FROM A REAL
FORTRAN WORD.

gl

e Wl T y R, T y . U PSR URNRUNIE RO et
T O S e e A T B i

| ST

) AEEP RS U B

R R TR |



.......................................

SUBROU-
NUM  TINE
BER NAME  FUNCTION

OR
SHIFT
TIMDAT

.......... R e e o o s d
- . PR . . . . D oatall A lea Cea alela e a’alataatle e ata _alam






